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Abstract

Various factors which may influence photometric accuracy of the data obtained with the Optical
Monitor are analysed. It is shown than the most likely source of the photometric errors for the
bright stars (brighter than ~ 14™ in V') is the pixel-to-pixel sensitivity variations of the CCD not
accounted for in the current reduction procedure. For the fainter stars the primary source of errors
is the straylight features. Depending on the source brightness, they may influence the photometric
magnitude even if they are so faint themselves that they cannot be detected visually.

1 Observational data

For the field EXO 0748-67 we have 5 exposures in the V filter in rev. 17, 37, 40, and 44 (2 exposures). This
allows for the consistency check between the exposures. Namely, we can compare the typical standard
deviations for various stellar magnitudes, obtained from a single frame, with the scatter of the magnitudes
themselves from frame to frame. The comparison is shown in Fig.1.

The plot shows all stars in the field which were measured at least 4 times'. Every star is represented
by 2 dots: the filled and the open ones. The x-coordinate of both dots is the average magnitude of a
given star over the frames in which it was measured. The filled dot represents the average value of the
star’s standard deviations obtained in these frames. I call these deviations “internal” errors as they are
obtained from individual frames and are mainly determined by the poisson errors of the stellar and the
background count rates. The open dot represents an estimate of the standard deviation based on the
magnitudes of the star in different frames (I call it the “external” error):

n
ot = Z(magi— < mag >)? / (n—1)
i=1

It is important to note that in Fig.1 the internal errors are the errors of the RAW magnitudes while the
external ones are calculated from the magnitudes CORRECTED for the coincidence loss (c.l.). One might
think that the internal errors should be corrected to account for the error propagation while applying the
c.l. correction formula. The reason why I did not do this for this plot, will become evident below. For
now I just note that for the faint stars below say ~ 15" the difference is not important as their fluxes
are in the linear part of the CCD dynamic range.

3 evident features (problems) can be readily seen in Fig.1:

1. For the bright stars (< 14™), 0** is larger than 1% and clearly exceeds the error which would be
expected from the poisson noise for these stars.

2. For the other stars, the scatter of the o°** values seems to be too large, even despite the fact that
we usually have only 4 measurements per star.

3. The median of the open dots goes HIGHER than the median of the filled dots.

We need to understand the reasons for these features.

I For most stars, there were 4 measurements: some fainter stars were not identified in all frames, some were rejected from
some frames due to the severe straylight, in the rev. 44 one of Rudi-5 windows is absent etc...
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Figure 1: Observational data for the 5 V exposures of the EXO 0748-67 field. Filled dots: < o™ >,
open dots: o°%t.

2 Obvious potential explanations which could be checked from
the anaysis of the data themselves

2.1 Global change in the CCD sensitivity with time

This was the first possible explanation which came to my mind. Recall that the magnitudes used in the
plot are the absolute magnitudes calculated according to

mag = —2.51g flux + 18.1071, (1)

where 18.1071 is the current zero point in the V filter and flux is the stellar flux measured within the
aperture with the radius R=6". If the global sensitivity is changing with time, fluz may vary from frame
to frame. To check this assumption I calculated the differential magnitudes choosing one star (the same
in all frames) in every frame as a reference. With 2 different reference stars (of 12™.5 and 15™) the
results were identical to those shown in Fig.1.

2.2 Large-scale variability of the sensitivity over the CCD

This was suggested at the last Jan 2001 calibration meeting. Currently the flat field is assumed to be
equal to 1 so if two frames are shifted relative to each other, this might cause the increased scatter in
a.ezt'

To check this assumption I compared two frames obtained during the rev. 44. They have exactly
the same positional angle and their relative shift is equal to only 1”.5. However, for these 2 frames, the
scatter in the magnitude differences also greatly exceeds the internal error. This rules out the large scale
sensitivity variations as a potential explanation.



2.3 ModS8 fixed noise

This was also suggested at the last cal. meeting. The idea was that if i.e. the sky annulus is too narrow
and includes a small number of pixels, the fixed noise might increase the error of the background, resulting
in the increased error in the magnitudes of the faint stars.

However, the sky annulus used in the analysis, while being rather narrow (to avoid the straylight
problem as much as possible), still covers about 100 pixels. The inner and outer radii of the sky annulus
are R1=7, R2=9 pixels. Here and below I always refer 2x2 binned subpixels as “pixels”. The star aperture
R=6 pix covers 113 pixels and apparently effectively averages the mod8 noise.

Nevertheless, to check this assumption, I measured the background and its error for different sky
annuli with R2 up to 20 pixels (corresponding to the area of 1102 pixels), in a straylight-free region of a
frame. There was no decrease in the background standard deviation while using larger annuli.

3 Numerical simulations: the basic algorithm

At this point, I decided to write a program which would similate the whole observing and data reduction
process. The algorithm of the simulations was as follows:

1. Create the average fluxes of about 550 artificial “stars” ranging from 0.04 counts/s/aperture® to
500 counts/s/aperture, which corresponds to the magnitudes varying from 21™.6 to 11™.4. The
individual average fluxes were distributed within this interval so as to approximately represent the
magnitude distribution in the real data.

2. For every “star”, add the average background to its average flux, multiply the sum by the exposure
time and generate 4 random poisson numbers with the above sum as the average. In the data I
have, the background level is equal to ~ 1.3 + 2.0 counts/s/aperture and is slightly changing
across the field. This was accounted for, but is not really important. The exposure time T,,, was
assumed to be equal to 1000 sec. Then, generate 4 random numbers for the background of a given
star. This gives me 4 artificial frames containing the infalling count numbers for the set of stars
and their backgrounds.

3. Assuming the constant frametime F'I' = 0.01 s and the dead fraction DF = 0.02, divide the above
count numbers by T.., to get the count rates and apply the inversion of the c.l. correction formula
to these rates:

_ efcts_true-FT-(lfDF)

ts_ = 2
cts_raw T (2)

This way, we get the RAW measured count rates for the stars and the background.

4. Process the obtained raw count rates in the same way we do it in the data reduction, i.e. apply the
c.l. correction formula

In(1—cts_raw - FT)
FT(1-DF)

cts_corr = — (3)
to both stellar flux and the background, subtract the background and calculate the magnitude
according to (1). The internal error (the error of the RAW magnitude in a given frame) is calculated
as

2.5 \/o2(cts_raw) + o2 (cts_bg_raw)
In(10) cts-raw — cts_bg-raw

(4)

o™ (mag_raw) =

where o2 (cts-raw) = ctsraw/Tey, (same for the background). This formula follows from the as-
sumption of the poisson distribution of the measured stellar (c¢ts_raw) and background (cts_bg-raw)

2For the R=6 pix aperture.



count rates and directly corresponds to the error estimates made by the standard photometric pro-
grams like daophot. As the magnitudes themselves are corrected by applying (3) to the raw count
rates, the error of the corrected magnitude will be different. It can be calculated using the above
formula, but with o(cts_raw) and o(cts_bg-raw) replaced by:

o(cts_raw)
(1—ctsraw- FT)(1— DF)’ (5)

o(cts-corr) =

according to the propagation of the error in (3).

Now, the whole procedure may seem meaningless, as in the step 4 I simply reverse what I did in the
step 3. However, the purpose of the simulation was not to check the scatter introduced by the small
number of frames. For that, I would simply generate 4 random numbers and compare the estimated
sigma with the known sigma of the poisson process. The goals of the simulations were:

— (i)to compare the errors estimated according to (4) (including these errors after their correction for
the c.l effects (5)) to the true poisson errors. Equation (4) assumes that the RAW count numbers are
driven from a poisson distribution, while for the bright stars they are NOT.

— (ii)the algorithm above assumes the perfect detector in the sense that it does not introduce any noise.
It was clear that the results of the simulations would not agree with the observed data. So the more
important second goal was to try to find the source(s) of the detector noise (and include it into the
simulations) which would account for the observed features.

4 Simulation results

4.1 The basic algorithm

In Fig.2a the results of the simulations with the basic algorithm are shown. While the scatter of the
external errors for the fainter stars is rather large, it clearly does not account for the observed picture.
First, it is still smaller that the observed one. Second, it is symmetric relative to the internal errors (which
is not surprising). To demonstrate that the scatter is indeed related to the small number of simulated
frames, I repeated the simulations with the number of frames equal to 500. The resulting plot is shown
in Fig.2b.

Now, it is interesting to look at the brighter stars. In Fig.3a the left part of the bottom plot from
Fig.2 is shown with the y-axis scale increased. I show the simulations made for 500 frames to make the
effect more evident. Clearly, the internal error of the RAW magnitude systematically exceeds the true
poisson error for stars brighter than ~ 14™. This is because, as I said before, this error is calculated in
the assumption that the RAW fluxes have poisson distribution. In fact, for the bright stars, coincidence
losses make the distribution non-poisson and the brighter the star, the narrower is the distribution of its
raw flux compared to the poisson one. In the extreme case of a star for which we count one event during
every frametime period, the probability distribution for the RAW flux will be a d-function equal to 1 at
x = 1/FT and 0 elsewhere, with its standard deviation equal to zero. However, if one assumes that the
measured flux is driven from a poisson distribution he/she would estimate the deviation as /1/FT.

If someone would “believe” in an error estimate for the RAW magnitude of a bright star made in this
way, he/she would naturally want to adjust the error for the effects of the coincidence loss. However, this
estimate will be meaningless with respect of the true poisson error of the star, for the initial estimate of
the RAW magnitude error is already wrong. This is demonstrated in the Fig.3b, in which the filled dots
show the internal errors corrected for the c.l.

This is a simple stuff but I thought I should mention it. If an observer uses a general photomet-
ric package like daophot to reduce the OM frames, the errors will be calculated by the package in an
assumption of the poisson distribution of the RAW count numbers.

4.2 Local sensitivity variations (LSVs)

Returning to the problem with the large observed errors of the bright stars, I must note that it is further
amplified by the fact that apparently the internal errors shown in Fig.1 are overestimated. That makes
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Figure 2: Simulations, the basic algorithm (i.e. pure poisson noise in the data, no noise introduced by the
detector). The meaning of the symbols is the same as in Fig.1. (a) 4 artificial frames; (b) 500 artificial
frames.
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Figure 3: Simulations, the basic algorithm. 500 artificial frames. (a) the same as in Fig.2b; (b) the same
as in Fig.2b but the internal errors are corrected according to (5).



the discrepancy even stronger. We certainly need some source of additional noise to explain the observed
picture. At this point I thought about the pixel-to-pixel sensitivity variations of the CCD. While the
size of the physical pixel is equal to 4 arcsec and our aperture has the radius R=6 arcsec (i.e. not much
larger than the size of the physical pixel), changes in the local sensitivity may cause the additional noise.
Recall, however, that we have two frames separated by as little as 1.5 arcsec and yet the scatter of the
magnitudes between these two frames still large. This would imply, if we adopt the hypothesis, that
the local changes in the sensitivity of the physical pixels are somehow translated into the changes of the
sensitivity of the virtual pixels. From the current local flat field image sent me by Bob Shirey, it is not
clear what would be the possible amplitude of such variations, for the statistics of this image is extremely
poor®. However, I could simply assume some level of the additional noise introduced by this effect and
incorporate it into the simulations. So I did.

Fig.4 shows the effect of the inclusion of the LSVs. For the upper plot, every cts_raw and cts_bg_raw
was multiplied by a random gaussian number with the average equal to 1 and the standard deviation
equal to 0.01, which means 1% effect of the LSV on the fluzes/backgrounds measured within R = 6 arcsec
aperture. The bottom plot shows the same simulation but with the standard deviation of the LSV equal
to 0.004.

Thus, the effect of the LSV on the measured count rates equal to 0.4% is apparently sufficient to
explain the observed magnitude errors of the bright stars. Note the increase of the errors toward the
brighter limit. This is of course the result of the error propagation when the c.l. correction is applied.
We even have a slight similar tendency in our observed data in Fig.1 (though it is only based on a couple
of data points...). I would like to stress it out, however, that the agreement between the simulations and
the data does NOT prove that the LSVs are indeed the reason for the observed behaviour. In fact, ANY
additional noise will cause the same effect.

4.3 Straylight

While the LSVs seem to be a good candidate for the explanation of the bright star errors, they do not
solve the problems 2 and 3 mentioned in the 1st section of the report. As I thought about it I realized
that as long as two frames are not shifted relative to each other (so the large scale CCD sensitivity
variations are not important), ANY additional noise within the detector would only increase the scatter
but preserve its symmetry relative to the internal errors curve. This is because the average value of any
such noise signal would be constant.

To made the distribution of the open dots asymmetrical, we need something which average level is
changing from frame to frame. The straylight is the perfect candidate to this role. Indeed, its count
rate is not constant and depends on the particular configuration of the stars in the field observed.
Let’s assume that within a given frame we have some additional straylight within the stellar aperture
but not in the background annulus. Let the count rate of the straylight be cts_sl (I won’t bother
with the c.l. correction assuming that the count rate is low). Then, without knowing anything else,
we would estimate the internal error according to (4), just replacing o?(cts_raw) = cts-raw/Teyp, by
o?(cts-raw) = (cts_raw + cts_sl) /Teyp. But in fact an additional error should be added under the square
root equal to o?(cts_sl_0), the error of the straylight average count rate.

Straylight will of course change the internal errors as well. But the point is that the true error will
always be higher than the internal one and will manifest itself in the distribution of the external errors.

Of course, changes of the average straylight count rate from one frame to another do not have to
be gaussian; they are most likely not. Nevertheless, to simulate the effect of the straylight, I assumed
that its average count rate is distributed according to the gaussian law (actually, I also tried the uniform
distribution, which gave me qualitatively the same results). The modification of the algorithm consisted
in adding a random gaussian number with the average equal to zero and standard deviation equal to
0.4 counts/s/aperture to the cts_raw. Setting the average to zero emulates different possible combina-
tions of the straylight features: stronger/weaker straylight in the background annulus compared to the
flux within the stellar aperture. The results of the simulations are shown in Fig.5. In this simulation, the
LSV effects are turned off.

3The latest flat field has better statistics so it is worth applying the flat field correction to see whether the scatter would
decrease. This is to be done in the near future.
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Figure 4: Simulations, LSV effect on the errors. 4 artificial frames. (a) the amplitude of the effect is 1%;
(b) the amplitude of the effect is 0.4%.
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Figure 5: Simulations. Straylight effect on the errors. NO LSVs. 4 artificial frames. All stars are affected.

Now, if we recall that the straylight may affect not all stars we will get a mizture of two distributions
which hopefully will resemble the observed picture. In Fig.6, the effect of the straylight is shown assuming
that 30% of the stars are affected. Now, isn’t it similar to Fig.1? Recall that the standard deviation of
the straylight difference between the background and the stellar total count rates required to create this
plot, is equal to 0.4 counts/s/aperture. This is about 5 times smaller than the typical background level
and apparently cannot be detected by the visual inspection of the images.

One might argue that for those two frames obtained during the rev. 44, the straylight features must
be identical as the shift between the frames is small. However, while the general patterns are indeed
similar, there are clear differences in the straylight between these frames. The example is shown in Fig.7.
Evidently, even slight change in the position of a star projected on the chamfer cause significant changes
in the straylight pattern. Considering the low required amplitude of the straylight it is not surprising
that these two frames still show significant scatter.

Finally, in Fig.8 I show the combined effect of the LSVs and the straylight. Note that from Fig.6 it
might be conluded that the straylight effect alone without the LSV may explain the error behavior both
for the bright anf faint stars. This is exactly what I said before: whatever is the reason for the additional
noise, it will affect the bright stars alikely. Is there a way to discriminate between the two effects? Well,
if we had a large number of observations of bright stars, then possibly yes. If the LSVs are not important,
then there may be some bright stars — those not affected by the straylight (do such stars exist?) — which
would have very small photometric errors. On the other hand, if the LSV is important, there will be
no such stars. But we’d need A LOT of observations to check this, and it is certainly not worth the
observing time. Another way to estimate the importance of the LSV is to accrue a highly accurate local
flat field, apply it and check whether the errors are decreased. This will be done in the near future.

5 Conclusions
I will summarize what I learned from this study:

1. Estimates of the RAW magnitude errors made in the manner usual for the standard photometric
packages (i.e., assuming the poisson distribution of the RAW count rates), give wrong results for
the stars brighter than ~ 14™. Correcting these estimates for the coincidence loss would give even
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Figure 6: Simulations. Straylight effect on the errors. NO LSVs. 4 artificial frames. 30% of stars are
affected.

Figure 7: Images of the two frames in the V filter obtained during rev. 44.
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Figure 8: Simulations, Combined LSV and straylight effect on the errors. 4 artificial frames. The
parameters for every effect are as before.

wronger numbers. Note, however, that, ironically, the behaviour of these corrected estimated errors
is similar to what I finally got with all the effects introduced into the simulations. This is because
we overestimate the error of the RAW count rate and in a sense this is equivalent to introducing
some real additional noise and correctly accounting for it...

2. For the bright stars, the reason for the noise exceeding their poisson noise, may be related to the
pixel to pixel sensitivity changes.

3. For the faint stars (the border between “bright” and “faint” stars is ~ 14™) the effect which appar-
ently explains the observed error scatter is the straylight. As a result of this scattered illumination,
in Fig.1 we see a mixture of 2 distributions — one for the stars not affected by the straylight and
the other one for the affected stars.

4. Tt is not clear whether the straylight effects alone may explain all observed features in Fig.1. How-
ever, as a matter of practical importance, it is possibly sufficient to say that the safe limit for the
best magnitude accuracy is 0™.01. For the extremely bright stars (brighter than ~ 12™) this limit
may increase to 0™.03 + 0™.05 or even higher if cts_raw - FT is extremely close to 1..

5. I analysed observations in the V filter. While simulations are irrelevant to any particular filter, one
can expect than in real data, the straylight effect would not be observed in the ultraviolet filters.
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